Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator.
نویسندگان
چکیده
Time-lapse or longitudinal fluorescence microscopy is broadly used in cell biology. However, current available time-lapse fluorescence microscopy systems are bulky and costly. The limited field-of-view (FOV) associated with the microscope objective necessitates mechanical scanning if a larger FOV is required. Here we demonstrate a wide FOV time-lapse fluorescence self-imaging Petri dish system, termed the Talbot Fluorescence ePetri, which addresses these issues. This system's imaging is accomplished through the use of the Fluorescence Talbot Microscopy (FTM). By incorporating a microfluidic perfusion subsystem onto the platform, we can image cell cultures directly from within an incubator. Our prototype has a resolution limit of 1.2 μm and an FOV of 13 mm(2). As demonstration, we obtained time-lapse images of HeLa cells expressing H2B-eGFP. We also employed the system to analyze the cells' dynamic response to an anticancer drug, camptothecin (CPT). This method can provide a compact and simple solution for automated fluorescence imaging of cell cultures in incubators.
منابع مشابه
Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy.
Here we report a low-cost and simple wide field-of-view (FOV) on-chip fluorescence-imaging platform, termed fluorescence Talbot microscopy (FTM), which utilizes the Talbot self-imaging effect to enable efficient fluorescence imaging over a large and directly scalable FOV. The FTM prototype has a resolution of 1.2 μm and an FOV of 3.9 mm × 3.5 mm. We demonstrate the imaging capability of FTM on ...
متن کاملWide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging.
The capability to perform multicolor, wide field-of-view (FOV) fluorescence microscopy imaging is important in screening and pathology applications. We developed a microscopic slide-imaging system that can achieve multicolor, wide FOV, fluorescence imaging based on the Talbot effect. In this system, a light-spot grid generated by the Talbot effect illuminates the sample. By tilting the excitati...
متن کاملThe ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM).
We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap avail...
متن کاملMicrofluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality.
The fabrication of a novel microfluidic system, integrated with a set of laser-controlled microactuators on an ePetri on-chip microscopy platform, is presented in this paper. In the fully integrated microfluidic system, a set of novel thermally actuated paraffin-based microactuators, precisely controlled by programmed laser optics, was developed to regulate flow and to provide pumping of liquid...
متن کاملCORRIGENDUM: Automated single-cell motility analysis on a chip using lensfree microscopy
Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 85 4 شماره
صفحات -
تاریخ انتشار 2013